查看原文
其他

论文周报 | 推荐系统领域最新研究进展

ML_RSer 机器学习与推荐算法 2022-12-14
嘿,记得给“机器学习与推荐算法”添加星标

本文精选了上周(0704-0710)最新发布的9篇推荐系统相关论文。

本次论文集合的方向主要包括对BPR经典方法的改进[1]、基于元控制器的端云协同推荐系统[2]、序列推荐模型的高效训练机制[3]、基于任意分布可靠保证的推荐算法[4]、基于多粒度对比学习的物品推荐算法[5]、多模态可解释推荐算法[6]、可解释与交互式结合的推荐算法[7]、打破反馈循环的因果推理推荐系统[8]、可定制的对话推荐系统[9]等。

以下整理了论文标题以及摘要,如感兴趣可移步原文精读。


  • 1. SPR:Supervised Personalized Ranking Based on Prior Knowledge for  Recommendation
  • 2. Device-Cloud Collaborative Recommendation via Meta Controller, KDD2022
  • 3. Effective and Efficient Training for Sequential Recommendation using  Recency Sampling, Recsys2022
  • 4. Recommendation Systems with Distribution-Free Reliability Guarantees
  • 5. Multi-granularity Item-based Contrastive Recommendation
  • 6. Personalized Showcases: Generating Multi-Modal Explanations for  Recommendations
  • 7. Modelling Users with Item Metadata for Explainable and Interactive  Recommendation
  • 8. Breaking Feedback Loops in Recommender Systems with Causal Inference
  • 9. Customized Conversational Recommender Systems, PKDD2022


1. SPR:Supervised Personalized Ranking Based on Prior Knowledge for  Recommendation

Chun Yang, Shicai Fan

https://arxiv.org/abs/2207.03197

The goal of a recommendation system is to model the relevance between each user and each item through the user-item interaction history, so that maximize the positive samples score and minimize negative samples. Currently, two popular loss functions are widely used to optimize recommender systems: the pointwise and the pairwise. Although these loss functions are widely used, however, there are two problems. (1) These traditional loss functions do not fit the goals of recommendation systems adequately and utilize prior knowledge information sufficiently. (2) The slow convergence speed of these traditional loss functions makes the practical application of various recommendation models difficult.To address these issues, we propose a novel loss function named Supervised Personalized Ranking (SPR) Based on Prior Knowledge. The proposed method improves the BPR loss by exploiting the prior knowledge on the interaction history of each user or item in the raw data. Unlike BPR, instead of constructing <user, positive item, negative item> triples, the proposed SPR constructs <user, similar user, positive item, negative item> quadruples. Although SPR is very simple, it is very effective. Extensive experiments show that our proposed SPR not only achieves better recommendation performance, but also significantly accelerates the convergence speed, resulting in a significant reduction in the required training time.

2. Device-Cloud Collaborative Recommendation via Meta Controller, KDD2022

Jiangchao Yao, Feng Wang, Xichen Ding, Shaohu Chen, Bo Han, Jingren Zhou, Hongxia Yang

https://arxiv.org/abs/2207.03066

On-device machine learning enables the lightweight deployment of recommendation models in local clients, which reduces the burden of the cloud-based recommenders and simultaneously incorporates more real-time user features. Nevertheless, the cloud-based recommendation in the industry is still very important considering its powerful model capacity and the efficient candidate generation from the billion-scale item pool. Previous attempts to integrate the merits of both paradigms mainly resort to a sequential mechanism, which builds the on-device recommender on top of the cloud-based recommendation. However, such a design is inflexible when user interests dramatically change: the on-device model is stuck by the limited item cache while the cloud-based recommendation based on the large item pool do not respond without the new re-fresh feedback.

To overcome this issue, we propose a meta controller to dynamically manage the collaboration between the on-device recommender and the cloud-based recommender, and introduce a novel efficient sample construction from the causal perspective to solve the dataset absence issue of meta controller. On the basis of the counterfactual samples and the extended training, extensive experiments in the industrial recommendation scenarios show the promise of meta controller in the device-cloud collaboration.

3. Effective and Efficient Training for Sequential Recommendation using  Recency Sampling, Recsys2022

Aleksandr Petrov, Craig Macdonald

https://arxiv.org/abs/2207.02643

Many modern sequential recommender systems use deep neural networks, which can effectively estimate the relevance of items but require a lot of time to train. Slow training increases expenses, hinders product development timescales and prevents the model from being regularly updated to adapt to changing user preferences. Training such sequential models involves appropriately sampling past user interactions to create a realistic training objective. The existing training objectives have limitations. For instance, next item prediction never uses the beginning of the sequence as a learning target, thereby potentially discarding valuable data. On the other hand, the item masking used by BERT4Rec is only weakly related to the goal of the sequential recommendation; therefore, it requires much more time to obtain an effective model. Hence, we propose a novel Recency-based Sampling of Sequences training objective that addresses both limitations. We apply our method to various recent and state-of-the-art model architectures - such as GRU4Rec, Caser, and SASRec. We show that the models enhanced with our method can achieve performances exceeding or very close to stateof-the-art BERT4Rec, but with much less training time.

4. Recommendation Systems with Distribution-Free Reliability Guarantees

Anastasios N. Angelopoulos, Karl Krauth, Stephen Bates, Yixin Wang, Michael I. Jordan

https://arxiv.org/abs/2207.01609

When building recommendation systems, we seek to output a helpful set of items to the user. Under the hood, a ranking model predicts which of two candidate items is better, and we must distill these pairwise comparisons into the user-facing output. However, a learned ranking model is never perfect, so taking its predictions at face value gives no guarantee that the user-facing output is reliable. Building from a pre-trained ranking model, we show how to return a set of items that is rigorously guaranteed to contain mostly good items. Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate (FDR), regardless of the (unknown) data distribution. Moreover, our calibration algorithm enables the easy and principled integration of multiple objectives in recommender systems. As an example, we show how to optimize for recommendation diversity subject to a user-specified level of FDR control, circumventing the need to specify ad hoc weights of a diversity loss against an accuracy loss. Throughout, we focus on the problem of learning to rank a set of possible recommendations, evaluating our methods on the Yahoo! Learning to Rank and MSMarco datasets.

5. Multi-granularity Item-based Contrastive Recommendation

Ruobing Xie, Zhijie Qiu, Bo Zhang, Leyu Lin

https://arxiv.org/abs/2207.01387

Contrastive learning (CL) has shown its power in recommendation. However, most CL-based recommendation models build their CL tasks merely focusing on the user's aspects, ignoring the rich diverse information in items. In this work, we propose a novel Multi-granularity item-based contrastive learning (MicRec) framework for the matching stage (i.e., candidate generation) in recommendation, which systematically introduces multi-aspect item-related information to representation learning with CL. Specifically, we build three item-based CL tasks as a set of plug-and-play auxiliary objectives to capture item correlations in feature, semantic and session levels. The feature-level item CL aims to learn the fine-grained feature-level item correlations via items and their augmentations. The semantic-level item CL focuses on the coarse-grained semantic correlations between semantically related items. The session-level item CL highlights the global behavioral correlations of items from users' sequential behaviors in all sessions. In experiments, we conduct both offline and online evaluations on real-world datasets, where MicRec achieves significant improvements over competitive baselines. Moreover, we further verify the effectiveness of three CL tasks as well as the universality of MicRec on different matching models. The proposed MicRec is effective, efficient, universal, and easy to deploy, which has been deployed on a real-world recommendation system, affecting millions of users. The source code will be released in the future.

6. Personalized Showcases: Generating Multi-Modal Explanations for  Recommendations

An Yan, Zhankui He, Jiacheng Li, Tianyang Zhang, Julian McAuley

https://arxiv.org/abs/2207.00422

Existing explanation models generate only text for recommendations but still struggle to produce diverse contents. In this paper, to further enrich explanations, we propose a new task named personalized showcases, in which we provide both textual and visual information to explain our recommendations. Specifically, we first select a personalized image set that is the most relevant to a user's interest toward a recommended item. Then, natural language explanations are generated accordingly given our selected images. For this new task, we collect a large-scale dataset from Google Local (i.e.,~maps) and construct a high-quality subset for generating multi-modal explanations. We propose a personalized multi-modal framework which can generate diverse and visually-aligned explanations via contrastive learning. Experiments show that our framework benefits from different modalities as inputs, and is able to produce more diverse and expressive explanations compared to previous methods on a variety of evaluation metrics.

7. Modelling Users with Item Metadata for Explainable and Interactive  Recommendation

Joey De Pauw, Koen Ruymbeek, Bart Goethals

https://arxiv.org/abs/2207.00350

Recommender systems are used in many different applications and contexts, however their main goal can always be summarised as "connecting relevant content to interested users". Personalized recommendation algorithms achieve this goal by first building a profile of the user, either implicitly or explicitly, and then matching items with this profile to find relevant content. The more interpretable the profile and this "matching function" are, the easier it is to provide users with accurate and intuitive explanations, and also to let them interact with the system. Indeed, for a user to see what the system has already learned about her interests is of key importance for her to provide feedback to the system and to guide it towards better understanding her preferences.

To this end, we propose a linear collaborative filtering recommendation model that builds user profiles within the domain of item metadata, which is arguably the most interpretable domain for end users. Our method is hence inherently transparent and explainable. Moreover, since recommendations are computed as a linear function of item metadata and the interpretable user profile, our method seamlessly supports interactive recommendation. In other words, users can directly tweak the weights of the learned profile for more fine-grained browsing and discovery of content based on their current interests. We demonstrate the interactive aspect of this model in an online application for discovering cultural events in Belgium. Additionally, the performance of the model is evaluated with offline experiments, both static and with simulated feedback, and compared to several state-of-the-art and state-of-practice baselines.

8. Breaking Feedback Loops in Recommender Systems with Causal Inference

Karl Krauth, Yixin Wang, Michael I. Jordan

https://arxiv.org/abs/2207.01616

Recommender systems play a key role in shaping modern web ecosystems. These systems alternate between (1) making recommendations (2) collecting user responses to these recommendations, and (3) retraining the recommendation algorithm based on this feedback. During this process the recommender system influences the user behavioral data that is subsequently used to update it, thus creating a feedback loop. Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior, raising ethical and performance concerns when deploying recommender systems. To address these issues, we propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference and can be applied to any recommendation algorithm that optimizes a training loss. Our main observation is that a recommender system does not suffer from feedback loops if it reasons about causal quantities, namely the intervention distributions of recommendations on user ratings. Moreover, we can calculate this intervention distribution from observational data by adjusting for the recommender system's predictions of user preferences. Using simulated environments, we demonstrate that CAFL improves recommendation quality when compared to prior correction methods.

9. Customized Conversational Recommender Systems, PKDD2022

Shuokai Li, Yongchun Zhu, Ruobing Xie, Zhenwei Tang, Zhao Zhang, Fuzhen Zhuang, Qing He, Hui Xiong

https://arxiv.org/abs/2207.00814

Conversational recommender systems (CRS) aim to capture user's current intentions and provide recommendations through real-time multi-turn conversational interactions. As a human-machine interactive system, it is essential for CRS to improve the user experience. However, most CRS methods neglect the importance of user experience. In this paper, we propose two key points for CRS to improve the user experience: (1) Speaking like a human, human can speak with different styles according to the current dialogue context. (2) Identifying fine-grained intentions, even for the same utterance, different users have diverse finegrained intentions, which are related to users' inherent preference. Based on the observations, we propose a novel CRS model, coined Customized Conversational Recommender System (CCRS), which customizes CRS model for users from three perspectives. For human-like dialogue services, we propose multi-style dialogue response generator which selects context-aware speaking style for utterance generation. To provide personalized recommendations, we extract user's current fine-grained intentions from dialogue context with the guidance of user's inherent preferences. Finally, to customize the model parameters for each user, we train the model from the meta-learning perspective. Extensive experiments and a series of analyses have shown the superiority of our CCRS on both the recommendation and dialogue services.


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

RecSys2022推荐系统论文集锦
推荐系统相关资源介绍
论文周报 | 推荐系统领域最新研究进展
图嵌入模型综述: 方法、数据集与应用

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存